We examine the entry behavior of producers in different industries in different export markets using a comprehensive data set of French firms. These data reveal enormous heterogeneity, primarily within industries, in the nature of market penetration. Nonetheless, some striking regularities appear both across and within industries.

The French data add a new dimension to an emerging empirical literature examining international trade at the level of individual producers. James Tybout (2003) provides a survey. This work has shown that: (i) exporters are in the minority; (ii) they tend to be more productive and larger; and yet (iii) they usually export only a small fraction of their output.

The findings that most firms do not export while those that do sell most of what they make at home suggest substantial barriers to exporting. Theories of producer export behavior have suggested either standard “iceberg” costs (e.g., Andrew Bernard et al., 2003), or fixed costs (e.g., Mark Roberts and Tybout, 1997; Marc Melitz, 2003), as explanations.

Up to now our knowledge of the export behavior of individual producers has been limited to knowing whether or not they export and how much they sell abroad if they do. Without data on where producers sell it is hard to untangle the nature of trade costs or whether they apply simply to exporting at all or to entering individual foreign markets.

I. The French Data

The French data, in indicating where French firms export, are particularly enlightening on these issues. They suggest a world in which national markets are highly fragmented, and in which both fixed and unit costs of export play a role in separating them. Rather than pursuing a particular explanation of firm export penetration, our purpose here is to establish some key features of the data that any successful model of trade and market structure must confront.

Pierre Biscourp and Kramarz (2002) describe how the French firm-level data are constructed by merging customs and tax-administration data sets. French customs records exports of French firms to each of over 200 destinations. We use 1986 data. Table 1 presents our industry classification and compares features of the French firm data with U.S. plant-level data taken from Bernard and J. Bradford Jensen (1995). Since the U.S. data exclude the smallest plants, while the French data are virtually exhaustive, there are more French producers, especially in light industries such as food and tobacco products. But there are strong underlying similarities between the two countries, not only in overall export participation, but also in the pattern across industries.

II. Dissection 1: Markets per Firm

Having seen the similarity between the French and U.S. data in terms of overall export activity, we now look at the dimension unique to the French data: where individual firms sell. Table 2 presents, for each of our 16 industries, the fraction of exporting firms shipping to exactly one destination, to 10 or more, and to 50 or more. In each case, we report the fraction of total exports that such firms represent. To summarize, across industries, the modal exporter ships to only one foreign destination (most often Belgium), whereas exports by the small fraction...
Firms that ship widely constitute a substantial share of total exports. Looking at all of manufacturing, Figure 1 plots the frequency with which firms serve different numbers of markets, including France itself (so that nonexporters appear as having one market). The frequency with which more markets are served declines smoothly and monotonically to the point where at most a single firm serves a very large number. Overall, the elasticity of the number of firms with respect to the number of markets is roughly -2.5.

The qualitative pattern is very much replicated industry-by-industry, although there are distinct differences in the extent to which the frequency declines with number of markets. Figure 2 reports patterns for four industries that reflect the gamut: food and tobacco, lumber and furniture, chemicals, and electronic and electrical equipment. (To make the plots more comparable across industries, frequency here is in terms of the fraction of firms in the industry rather than firm count, with the fractions

<table>
<thead>
<tr>
<th>SIC</th>
<th>Industry</th>
<th>Number of producers</th>
</tr>
</thead>
<tbody>
<tr>
<td>20, 21</td>
<td>Food and tobacco products</td>
<td>59,637 (11.88%)</td>
</tr>
<tr>
<td>22, 23</td>
<td>Textiles and apparel</td>
<td>24,952 (17.456)</td>
</tr>
<tr>
<td>24, 25</td>
<td>Lumber and furniture</td>
<td>29,196 (22.518)</td>
</tr>
<tr>
<td>26</td>
<td>Paper and allied products</td>
<td>1,757 (4.512)</td>
</tr>
<tr>
<td>27</td>
<td>Printing and publishing</td>
<td>18,879 (27.842)</td>
</tr>
<tr>
<td>28</td>
<td>Chemicals, etc.</td>
<td>3,901 (7.312)</td>
</tr>
<tr>
<td>30</td>
<td>Rubber and plastics</td>
<td>4,722 (8.758)</td>
</tr>
<tr>
<td>31</td>
<td>Leather and leather products</td>
<td>4,491 (1.052)</td>
</tr>
<tr>
<td>32</td>
<td>Stone, clay, glass, and concrete</td>
<td>9,952 (10.292)</td>
</tr>
<tr>
<td>33</td>
<td>Primary metal industries</td>
<td>1,425 (4.626)</td>
</tr>
<tr>
<td>34</td>
<td>Fabricated metal products</td>
<td>25,923 (21.940)</td>
</tr>
<tr>
<td>35</td>
<td>Machinery and computer equipment</td>
<td>17,164 (27.003)</td>
</tr>
<tr>
<td>36</td>
<td>Electronic and electrical equipment</td>
<td>9,382 (9.525)</td>
</tr>
<tr>
<td>37</td>
<td>Transportation equipment</td>
<td>3,786 (5.439)</td>
</tr>
<tr>
<td>38</td>
<td>Instruments, etc.</td>
<td>7,567 (4.232)</td>
</tr>
<tr>
<td>39</td>
<td>Miscellaneous manufacturing</td>
<td>11,566 (7.254)</td>
</tr>
</tbody>
</table>

Manufacturing (ex. petroleum refining) 234,300 (191,648)

<table>
<thead>
<tr>
<th>SIC</th>
<th>Industry</th>
<th>Percentage that export</th>
<th>Percentage exported</th>
</tr>
</thead>
<tbody>
<tr>
<td>20, 21</td>
<td>Food and tobacco products</td>
<td>5.5 (13.1)</td>
<td>11.9 (5.8)</td>
</tr>
<tr>
<td>22, 23</td>
<td>Textiles and apparel</td>
<td>24.1 (6.2)</td>
<td>22.0 (4.6)</td>
</tr>
<tr>
<td>24, 25</td>
<td>Lumber and furniture</td>
<td>12.1 (6.7)</td>
<td>9.9 (8.8)</td>
</tr>
<tr>
<td>26</td>
<td>Paper and allied products</td>
<td>45.3 (18.0)</td>
<td>18.4 (8.7)</td>
</tr>
<tr>
<td>27</td>
<td>Printing and publishing</td>
<td>15.1 (2.9)</td>
<td>4.3 (3.2)</td>
</tr>
<tr>
<td>28</td>
<td>Chemicals, etc.</td>
<td>55.4 (30.3)</td>
<td>27.4 (12.0)</td>
</tr>
<tr>
<td>30</td>
<td>Rubber and plastics</td>
<td>44.3 (22.2)</td>
<td>24.3 (6.5)</td>
</tr>
<tr>
<td>31</td>
<td>Leather and leather products</td>
<td>26.3 (17.0)</td>
<td>19.3 (11.6)</td>
</tr>
<tr>
<td>32</td>
<td>Stone, clay, glass, and concrete</td>
<td>16.3 (9.0)</td>
<td>16.7 (7.0)</td>
</tr>
<tr>
<td>33</td>
<td>Primary metal industries</td>
<td>52.8 (22.1)</td>
<td>27.7 (4.0)</td>
</tr>
<tr>
<td>34</td>
<td>Fabricated metal products</td>
<td>16.8 (15.2)</td>
<td>13.1 (7.5)</td>
</tr>
<tr>
<td>35</td>
<td>Machinery and computer equipment</td>
<td>26.8 (19.6)</td>
<td>27.7 (13.9)</td>
</tr>
<tr>
<td>36</td>
<td>Electronic and electrical equipment</td>
<td>30.2 (34.6)</td>
<td>21.6 (11.5)</td>
</tr>
<tr>
<td>37</td>
<td>Transportation equipment</td>
<td>32.9 (23.5)</td>
<td>28.7 (12.9)</td>
</tr>
<tr>
<td>38</td>
<td>Instruments, etc.</td>
<td>13.3 (43.1)</td>
<td>32.7 (15.5)</td>
</tr>
<tr>
<td>39</td>
<td>Miscellaneous manufacturing</td>
<td>21.0 (13.0)</td>
<td>22.4 (7.3)</td>
</tr>
</tbody>
</table>

Manuf.* 17.4 (14.6) 21.6 (10.3)

Notes: U.S. figures are for 1987, derived from Bernard and Jensen (1995). French figures are for 1986, based on customs and Bénéfices Réel Normal (BRN)-Système Unité de Statistiques d’Entreprises (SUSE) data sources. Percentage exported is exports of the industry as a percentage of exporting producers’ sales.

* Manufacturing (ex. petroleum refining).

Table 1—Producer Export Participation, France vs. United States

<table>
<thead>
<tr>
<th>SIC</th>
<th>Industry</th>
<th>France</th>
<th>USA</th>
</tr>
</thead>
<tbody>
<tr>
<td>20, 21</td>
<td>Food and tobacco products</td>
<td>59,637</td>
<td>11,887</td>
</tr>
<tr>
<td>22, 23</td>
<td>Textiles and apparel</td>
<td>24,952</td>
<td>17,456</td>
</tr>
<tr>
<td>24, 25</td>
<td>Lumber and furniture</td>
<td>29,196</td>
<td>22,518</td>
</tr>
<tr>
<td>26</td>
<td>Paper and allied products</td>
<td>1,757</td>
<td>4,512</td>
</tr>
<tr>
<td>27</td>
<td>Printing and publishing</td>
<td>18,879</td>
<td>27,842</td>
</tr>
<tr>
<td>28</td>
<td>Chemicals, etc.</td>
<td>3,901</td>
<td>7,312</td>
</tr>
<tr>
<td>30</td>
<td>Rubber and plastics</td>
<td>4,722</td>
<td>8,758</td>
</tr>
<tr>
<td>31</td>
<td>Leather and leather products</td>
<td>4,491</td>
<td>1,052</td>
</tr>
<tr>
<td>32</td>
<td>Stone, clay, glass, and concrete</td>
<td>9,952</td>
<td>10,292</td>
</tr>
<tr>
<td>33</td>
<td>Primary metal industries</td>
<td>1,425</td>
<td>4,626</td>
</tr>
<tr>
<td>34</td>
<td>Fabricated metal products</td>
<td>25,923</td>
<td>21,940</td>
</tr>
<tr>
<td>35</td>
<td>Machinery and computer equipment</td>
<td>17,164</td>
<td>27,003</td>
</tr>
<tr>
<td>36</td>
<td>Electronic and electrical equipment</td>
<td>9,382</td>
<td>9,525</td>
</tr>
<tr>
<td>37</td>
<td>Transportation equipment</td>
<td>3,786</td>
<td>5,439</td>
</tr>
<tr>
<td>38</td>
<td>Instruments, etc.</td>
<td>7,567</td>
<td>4,232</td>
</tr>
<tr>
<td>39</td>
<td>Miscellaneous manufacturing</td>
<td>11,566</td>
<td>7,254</td>
</tr>
</tbody>
</table>

Manufacturing (ex. petroleum refining) 234,300 191,648

<table>
<thead>
<tr>
<th>SIC</th>
<th>Industry</th>
<th>France</th>
<th>USA</th>
</tr>
</thead>
<tbody>
<tr>
<td>20, 21</td>
<td>Food and tobacco products</td>
<td>36.2 (1.8)</td>
<td>18.4 (78.5)</td>
</tr>
<tr>
<td>22, 23</td>
<td>Textiles and apparel</td>
<td>26.8 (1.4)</td>
<td>24.9 (83.8)</td>
</tr>
<tr>
<td>24, 25</td>
<td>Lumber and furniture</td>
<td>50.6 (5.4)</td>
<td>4.8 (45.4)</td>
</tr>
<tr>
<td>26</td>
<td>Paper and allied products</td>
<td>25.4 (0.2)</td>
<td>24.6 (89.9)</td>
</tr>
<tr>
<td>27</td>
<td>Printing and publishing</td>
<td>46.8 (2.8)</td>
<td>9.1 (61.1)</td>
</tr>
<tr>
<td>28</td>
<td>Chemicals, etc.</td>
<td>19.6 (0.1)</td>
<td>38.4 (96.9)</td>
</tr>
<tr>
<td>30</td>
<td>Rubber and plastics</td>
<td>30.9 (1.1)</td>
<td>18.1 (91.4)</td>
</tr>
<tr>
<td>31</td>
<td>Leather and leather products</td>
<td>29.5 (1.2)</td>
<td>21.3 (83.5)</td>
</tr>
<tr>
<td>32</td>
<td>Stone, clay, glass, and concrete</td>
<td>47.4 (2.2)</td>
<td>12.6 (89.3)</td>
</tr>
<tr>
<td>33</td>
<td>Primary metal industries</td>
<td>23.0 (0.1)</td>
<td>25.1 (81.1)</td>
</tr>
<tr>
<td>34</td>
<td>Fabricated metal products</td>
<td>41.9 (3.0)</td>
<td>13.1 (71.7)</td>
</tr>
<tr>
<td>35</td>
<td>Machinery and computer equipment</td>
<td>30.6 (0.5)</td>
<td>26.1 (93.5)</td>
</tr>
<tr>
<td>36</td>
<td>Electronic and electrical equipment</td>
<td>29.7 (0.3)</td>
<td>23.3 (94.1)</td>
</tr>
<tr>
<td>37</td>
<td>Transportation equipment</td>
<td>28.9 (0.1)</td>
<td>24.2 (96.0)</td>
</tr>
<tr>
<td>38</td>
<td>Instruments, etc.</td>
<td>27.3 (1.1)</td>
<td>30.0 (90.9)</td>
</tr>
<tr>
<td>39</td>
<td>Miscellaneous manufacturing</td>
<td>34.8 (1.9)</td>
<td>17.5 (82.5)</td>
</tr>
</tbody>
</table>

Manuf.* 34.5 (0.7) 19.7 (89.6) 1.5 (51.6)

Notes: French figures are for 1986, based on Customs and BRN-SUSE data sources. Numbers in parentheses report the percentages of exports represented by each class of firm. See Table 1 (top panel) for explanations of SIC codes.

* Manufacturing (ex. petroleum refining).
grouped by intervals of 10 markets for market numbers exceeding 40.) Looking across all 16 industries, the decline is most precipitous in light industries such as lumber and furniture, paper, and textiles and apparel and least so in heavy industries such as chemicals and in high-tech industries such as machinery and computer equipment.

III. Dissection 2: Firms per Market

Having looked at the number of destinations across firms we now examine the number of firms across destinations. In order to match the French firm data to a measure of a destination’s market size we aggregate to 113 countries, including France. Our measure of market n’s size is its absorption, X_n, defined as gross production plus imports minus exports (in billions of U.S. dollars).

A standard approach to modeling bilateral trade volumes is the gravity equation, which relates exports from i to n, X_{ni}, to the market sizes of n and i and measures of the geographic barriers between them, such as distance d_{ni}, for example,

\[X_{ni} = \frac{G_{ni}}{d_{ni}^k}, \]

where G_{ni} is the gravity constant and k is the distance elasticity. Total exports and imports are from Robert Feenstra (2000). Gross production is from United Nations Industrial Development Organization (2001), available at the industry level for 86 countries. For the remainder we use value added in manufacturing from the World Bank (2000), translating it to gross production as described in a supplement available on the American Economic Review web site, which also reports the destinations, along with each destination’s total manufacturing absorption, French market share, number of French exporters, and average sales per French firm.

Figure 1. Entry of French Firms

Figure 2. Entry of French Firms in Four Industries (Fraction in Industry vs. Number of Markets)

1 Total exports and imports are from Robert Feenstra (2000). Gross production is from United Nations Industrial Development Organization (2001), available at the industry level for 86 countries. For the remainder we use value added in manufacturing from the World Bank (2000), translating it to gross production as described in a supplement available on the American Economic Review web site (http://www.aeaweb.org/aer/contents/), which also reports the destinations, along with each destination’s total manufacturing absorption, French market share, number of French exporters, and average sales per French firm.
Figure 3. Entry and Market Size

\[X_{nf} = \frac{X_n X_i}{d_{ni}} \]

(where \(\kappa \) is a constant reflecting units of measurement). In our situation the source is always France (so \(i = F \)), while we can summarize the role of geographic barriers with France’s market share, \(\lambda_{nF} \), giving us the following identity:

\[X_{nf} \equiv \lambda_{nF} X_n. \]

With our firm data we obtain an additional identity relating \(X_{nf} \) to firm behavior:

\[X_{nf} \equiv N_{nf} \bar{x}_{nf} \]

where \(N_{nf} \) is the number of French firms selling in destination \(n \) and \(\bar{x}_{nf} \) is the average sales per firm there.2

Figure 3 depicts a striking relationship among the three elements of these two decompositions. On the horizontal axis is the market size measure \(X_n \). On the vertical axis is the number of French exporters divided by French market share (\(N_{nf}/\lambda_{nF} \)).3 When normalized by French market share, the number of French firms selling increases systematically with market size, but with an elasticity less than 1.

Another way to present this relationship is in terms of a regression of \(\ln N_{nf} \) on \(\ln \lambda_{nF} \) and \(\ln X_n \), yielding the following coefficients (with robust standard errors):

\[
\begin{align*}
\ln N_{nf} &= 9.088 + 0.875 \ln \lambda_{nF} + 0.617 \ln X_n \\
&\quad (0.150) \quad (0.030) \quad (0.021)
\end{align*}
\]

The \(R^2 \) is 0.903.4 The implication is that, given market size, a higher French market share in a destination typically reflects 88 percent more firms selling there and 12 percent more sales per firm. Given market share, sales to a larger market reflect 62 percent more firms and 38 percent more sales per firm.

To what extent does this pattern of entry differ for individual industries? We pursued this question in a number of directions, all of which gave the same answer: not much. For example, we decomposed France’s exports to destination \(n \) in industry \(s \), \(X_{nfs} \), into (i) French market share, \(\lambda_{nF} \), (ii) absorption, \(X_n \) (both at the level of total manufacturing), and (iii) the “industry bias” of French exports to market \(n \), \(B_{nfs} = X_{nfs}/X_{nF} \), as well as into the number of French firms in industry \(s \) selling in market \(n \), \(N_{nfs} \), and their average sales there, \(\bar{x}_{nfs} \), yielding

\[\lambda_{nF} X_n B_{nfs} = X_{nfs} = N_{nfs} \bar{x}_{nfs}. \]

Extending our procedure above, we regressed \(\ln N_{nfs} \) on \(\ln \lambda_{nF} \), \(\ln X_n \), and \(\ln B_{nfs} \) for each industry. While the differences in coefficients are statistically significant, the magnitudes of the differences are small with no clear economic significance. Hence, we report a pooled regression (with robust standard errors in parenthesis, allowing for clustering by industry):5

\[
\begin{align*}
\ln N_{nfs} &= 7.442 + 0.826 \ln \lambda_{nF} \\
&\quad (0.258) \quad (0.023) \\
&\quad + 0.585 \ln X_n + 0.418 \ln B_{nfs} \\
&\quad (0.019) \quad (0.051)
\end{align*}
\]

The \(R^2 \) is 0.837. Adding industry indicators has

2 For a foreign destination \(n \), \(X_{nfs} \) is the sum across firms of exports there. When \(n \) is France, it is the sum across firms of domestic sales. All measures are translated into billions of U.S. dollars.

3 If French firms sell on average the same amount as other firms to destination \(n \), then \(N_{nf}/\lambda_{nF} \) indicates the total number of firms selling there.

4 Of course, because of the identity connecting the variables, a regression of \(\ln \bar{x}_{nF} \) on \(\ln \lambda_{nF} \) and \(\ln X_n \) yields coefficients of exactly 1 minus the ones reported above.

5 With 16 sectors and 113 destinations we have 1,808 observations. For 38, both \(X_{nfs} \) and \(N_{nfs} \) are zero. We dropped these observations.
virtually no effect on these coefficients and raises the R^2 to only 0.894. More importantly, to show that industry is not the essential element explaining entry, the R^2 of the regression with only industry indicators is 0.150, whereas a regression that only includes country indicators has an R^2 of 0.744. Our account of entry, which includes only three variables, is therefore both powerful and parsimonious.

IV. Conclusion

We have reviewed initial evidence on the nature of market penetration by individual firms in different industries across national markets. At the level of overall manufacturing several features stand out: (i) There is enormous heterogeneity across firms in the extent of their export participation, with most selling only at home. (ii) The number of firms selling to multiple markets falls off with the number of destinations with an elasticity of -2.5. (iii) Variation in French exports across destinations represents differences in the number of French firms selling there much more than the amount that each one sells. (iv) Decomposing French exports to each destination into the size of the market and French share, variation in market share translates nearly completely into firm entry, while about 60 percent of the variation in market size is reflected in firm entry.

Qualitatively, these features are very much replicated within two-digit industries, suggesting that differences across industries have surprisingly little to do with them. Across industries, larger markets are served by more firms. Presumably consumers benefit from more variety or more competition. A policy implication is that a potentially important welfare gain from market integration is the entry of firms.

Eaton et al. (2003) develop a Ricardian model with imperfect competition, transport costs, and destination-specific fixed costs of market entry to explain these qualitative features of the data. In that paper, we pursue a structural estimation of the model at the level of overall manufacturing, finding that it can pick up aggregate patterns quite well. Our examination of the industry-level data suggests that the qualitative implications of the model survive looking within industries, in particular, the enormous heterogeneity across individual firms and the fragmentation of the world market.

REFERENCES

This article has been cited by:

1. Daguo Lv, Lingyu Zhang, Ren Lu, Jingtao Yao. 2022. Industry characteristics and agglomeration of heterogeneous firms. *Journal of Industrial and Business Economics* 18. [Crossref]

2. Laura Connolly. 2022. The effects of a trade shock on gender-specific labor market outcomes in Brazil. *Labour Economics* 74, 102085. [Crossref]

3. Ziran Ding. 2021. Firm heterogeneity, variable markups, and multinational production: A review from trade policy perspective. *Journal of Economic Surveys* 86. [Crossref]

36. Elisabeth Christen, Michael Pfaffermayr, Yvonne Wolfmayr. 2019. Decomposing service exports adjustments along the intensive and extensive margin at the firm-level. *Review of International Economics* 27:1, 155-183. [Crossref]

44. Jae-whak Roh, Hyunjae Kim. 2018. The effects of Paris agreements on Korean economy and trade analyzed by the computational general equilibrium method considering firm’s heterogeneity. *Journal of Korea Trade* 22:3, 280-305. [Crossref]

54. Ryo Makioka. 2018. Decomposing the Effect of SNAP. *SSRN Electronic Journal*. [Crossref]

57. Marc J. Melitz. International Trade and Heterogeneous Firms 6849-6853. [Crossref]

60. Karsten Mau. 2017. US policy spillover(?) – China’s accession to the WTO and rising exports to the EU. *European Economic Review* 98, 169-188. [Crossref]

63. Yu Gao, Yin He, Xiaopeng Yin. 2017. Fixed Export Costs and Trade Patterns: The Case of China. *The World Economy* 40:8, 1614-1623. [Crossref]

64. Rishav Bista, Rebecca Tomasik. 2017. Time Zone Effect and the Margins of Exports. *The World Economy* 40:6, 1053-1067. [Crossref]

67. Martijn J. Burger. Corporations and Global Trade 1–4. [Crossref]

68. Andreja Jaklič, Anže Burger, Aljaž Kuncič, Desislava Dikova. Growth and Value Creation Through Diversified Exporting 81-108. [Crossref]

69. Andrew J. Cassey. 2016. The Destinations of State Trade Missions. *CESifo Economic Studies* 62:3, 547-571. [Crossref]

72. José A.F. Machado, J.M.C. Santos Silva, Kehai Wei. 2016. Quantiles, corners, and the extensive margin of trade. *European Economic Review* 89, 73-84. [Crossref]

73. Matthieu Crozet, Emmanuel Milet, Daniel Mirza. 2016. The impact of domestic regulations on international trade in services: Evidence from firm-level data. *Journal of Comparative Economics* 44:3, 585-607. [Crossref]

81. Jae-Whak Roh, Kyungsoo Oh. 2016. A study of the economic impacts of the TPP on Korea: Armington and Melitz model. *Journal of Korea Trade* 20:1, 35-46. [Crossref]

82. Valeria Gattai, Giorgia Sali. 2016. FDI and heterogeneous performance of European enterprises. *Economia e Politica Industriale* 43:1, 25-65. [Crossref]

85. Desislava Dikova, Andreja Jaklič, Anže Burger, Aljaž Kunčič. 2016. What is beneficial for first-time SME-exporters from a transition economy: A diversified or a focused export-strategy?. *Journal of World Business* 51:2, 185-199. [Crossref]

86. Hyun-Hoon Lee, Donghyun Park, Jing Wang. Exports of Parts and Components by Different Types of Firms in the People’s Republic of China: A Comprehensive Examination 87-112. [Crossref]

89. ###. 2015. The Economic Effects of FTA’s with South American Countries and its Indirect Effects to Present American FTA Partners: Using the CGE Approach. *The Journal of International Trade & Commerce* 11:6, 175-192. [Crossref]

94. Antoine Berthou, Vincent Vicard. 2015. Firms' Export Dynamics: Experience Versus Size. *The World Economy* 38:7, 1130-1158. [Crossref]

95. Roc Armenter, Miklós Koren. 2015. ECONOMIES OF SCALE AND THE SIZE OF EXPORTERS. *Journal of the European Economic Association* 13:3, 482-511. [Crossref]

96. Rodrigo Wagner, Andrés Zahler. 2015. New exports from emerging markets: Do followers benefit from pioneers?. *Journal of Development Economics* 114, 203-223. [Crossref]

97. Alexis Antoniades. 2015. Heterogeneous Firms, Quality, and Trade. *Journal of International Economics* 95:2, 263-273. [Crossref]

98. Catia Montagna, Antonella Nocco. 2015. (De)Unionization, Trade Liberalization and Selection. *Metroeconomica* 66:1, 91-122. [Crossref]

101. Patrick Grrning. 2015. International Endogenous Growth, Macro Anomalies, and Asset Prices. SSRN Electronic Journal. [Crossref]

102. Valeria Gattai, Giorgia Sali. 2015. FDI and Heterogeneous Performance of European Enterprises. SSRN Electronic Journal. [Crossref]

103. Antoine Berthou, Lionel Fontagne. 2015. Variable Trade Costs, Composition Effects, and the Intensive Margin of Trade. SSRN Electronic Journal. [Crossref]

104. Leandro D’Aurizio, Riccardo Cristadoro. 2015. Le Caratteristiche Principali DellInternazionalizzazione Delle Imprese Italiane (The Italian Firmss International Activity). SSRN Electronic Journal. [Crossref]

105. Siim Rahu. 2015. The Role of Uncertainty for Export Survival: Evidence from Estonia. SSRN Electronic Journal. [Crossref]

106. Karsten Mau. 2015. US Policy Spillover (?) -- China’s Accession to the WTO and Rising Exports to the EU. SSRN Electronic Journal. [Crossref]

107. Colin Hottman, Stephen J. Redding, David E. Weinstein. 2015. Quantifying the Sources of Firm Heterogeneity. SSRN Electronic Journal. [Crossref]

108. Ewa Mińska-Struzik. Learning-by-Exporting 612-622. [Crossref]

109. Francesco Serti, Chiara Tomasi. 2014. Export and import market-specific characteristics. Empirical Economics 47:4, 1467-1496. [Crossref]

112. George Alessandria, Horag Choi. 2014. Do falling iceberg costs explain recent U.S. export growth?. Journal of International Economics 94:2, 311-325. [Crossref]

113. Jože P. Damijan, Jozef Konings, Sašo Polanec. 2014. Import Churning and Export Performance of Multi-product Firms. The World Economy 37:11, 1483-1506. [Crossref]

116. Martina Lawless, Karl Whelan. 2014. Where Do Firms Export, How Much and Why?. The World Economy 37:8, 1027-1050. [Crossref]

118. Pravin Krishna, Jennifer P. Poole, Mine Zeynep Senses. 2014. Wage Effects of Trade Reform with Endogenous Worker Mobility. Journal of International Economics 93:2, 239-252. [Crossref]

120. Naiquan Liu, Xinyue Ye, Huimin Yang, Ying Li, Mark Leipnik. 2014. Manufacturing firm heterogeneity and regional economic growth difference in China. Regional Science Policy & Practice 6:2, 213-230. [Crossref]

121. Maria Bas, Vanessa Strauss-Kahn. 2014. Does importing more inputs raise exports? Firm-level evidence from France. Review of World Economics 150:2, 241-275. [Crossref]

122. Romain Aeberhardt, Ines Buono, Harald Fadinger. 2014. Learning, incomplete contracts and export dynamics: Theory and evidence from French firms. European Economic Review 68, 219-249. [Crossref]
123. J.M.C. Santos Silva, Silvana Tenreyro, Kehai Wei. 2014. Estimating the extensive margin of trade. *Journal of International Economics* 93:1, 67-75. [Crossref]

126. Joel Rodrigue. 2014. Multinational production, exports and aggregate productivity. *Review of Economic Dynamics* 17:2, 243-261. [Crossref]

129. Ryuhei Wakasugi, Ayumu Tanaka. Productivity and Modes of Internationalization: Evidence from Japanese Firms 119-134. [Crossref]

130. Marc J. Melitz, Stephen J. Redding. Heterogeneous Firms and Trade 1-54. [Crossref]

134. Pushan Dutt, Ana Maria Santacreu, Daniel A. Traca. 2014. The Gravity of Experience. *SSRN Electronic Journal*. [Crossref]

137. Markus Kelle. 2013. Crossing Industry Borders: German Manufacturers as Services Exporters. *The World Economy* 36:12, 1494-1515. [Crossref]

139. Pushan Dutt, Ilian Mihov, Timothy Van Zandt. 2013. The effect of WTO on the extensive and the intensive margins of trade. *Journal of International Economics* 91:2, 204-219. [Crossref]

140. Mario Larch, Wolfgang Lechthaler. 2013. Whom to send to Doha? The shortsighted ones!. *Review of Economic Dynamics* 16:4, 634-649. [Crossref]

141. Olivier Cadot, Céline Carrère, Vanessa Strauss-Kahn. 2013. TRADE DIVERSIFICATION, INCOME, AND GROWTH: WHAT DO WE KNOW?. *Journal of Economic Surveys* 27:4, 790-812. [Crossref]

142. Lili Wang, Yong Zhao. 2013. Does Experience Facilitate Entry into New Export Destinations?. *China & World Economy* 21:5, 36-59. [Crossref]

146. Mark Vancauteren. The Role of EU Harmonization in Explaining the Export-Productivity Premium of Food Processing Firms 165-185. [Crossref]

157. Marco de Pinto. International Trade and Unemployment: The Worker-Selection Effect 5-32. [Crossref]

158. Marco de Pinto. Unemployment Benefits as Redistribution Scheme for Trade Gains: A Positive Analysis 33-69. [Crossref]

159. Marco de Pinto. An Optimal Redistribution Scheme for Trade Gains 71-108. [Crossref]

160. S. Kalemli-Ozcan, C. Villegas-Sanchez. Role of Multinational Corporations in Financial Globalization 321-331. [Crossref]

162. SILVIANO ESTEVE-PÉREZ, FRANCISCO REQUENA-SILVENTE, VICENTE J. PALLARDÓ-LOPEZ. 2013. The DURATION OF FIRM-DESTINATION EXPORT RELATIONSHIPS: EVIDENCE FROM SPAIN, 1997-2006. *Economic Inquiry* **51**:1, 159-180. [Crossref]

163. Antoine Berthou, Vincent Vicard. 2013. Firms' Export Dynamics: Experience vs. Size. SSRN *Electronic Journal*. [Crossref]

168. Daniele Curzi, Alessandro Olper. 2012. Export behavior of Italian food firms: Does product quality matter?. *Food Policy* 37:5, 493-503. [Crossref]

177. Harry P. Bowen, Abraham Hollander, Jean-Marie Viaene. Heterogeneous firms 287-311. [Crossref]

178. Giorgio Barba Navaretti, Matteo Bugamelli, Riccardo Cristadoro, Daniela Maggioni. Are Firms Exporting to China and India Different from Other Exporters? 255-282. [Crossref]

179. Gregory Corcos, Delphine Irac, Giordano Mion, Thierry Verdier. 2012. The Determinants of Intrafirm Trade: Evidence from French Firms. *SSRN Electronic Journal*. [Crossref]

180. Giorgio Barba Navaretti, Matteo Bugamelli, Riccardo Cristadoro, Daniela Maggioni. 2012. Are Firms Exporting to China and India Different from Other Exporters?. *SSRN Electronic Journal*. [Crossref]

183. Markus Kelle. 2012. Crossing Industrial Borders: German Manufactures as Services Exporters. *SSRN Electronic Journal*. [Crossref]

190. Philippe Andrade, Martine Carré, Agnès Bénassy-Quéré. 2012. TVA et taux de marge : une analyse empirique sur données d’entreprises exportatrices françaises. *Économie & prévision n° 200-201*:2, 1. [Crossref]

193. Steven Yamarik, Sucharita Ghosh. 2011. Is natural openness or trade policy good for the environment?. *Environment and Development Economics* 16:6, 657-684. [Crossref]

195. Gianmarco Ottaviano, Christian Volpe Martinus. 2011. SMEs in Argentina: who are the exporters?. *Small Business Economics* 37:3, 341-361. [Crossref]

201. Hervé Bouhol, Sabien Dobbelare, Sara Maioi. 2011. Imports as Product and Labour Market Discipline. *British Journal of Industrial Relations* 49:2, 331-361. [Crossref]

203. SOOIL KIM, JEFFREY J. REIMER, MUNISAMY GOPINATH. 2011. THE IMPACT OF TRADE COSTS ON FIRM ENTRY, EXPORTING, AND SURVIVAL IN KOREA. *Economic Inquiry* 49:2, 434-446. [Crossref]

204. Raoul Minetti, Susan Chun Zhu. 2011. Credit constraints and firm export: Microeconomic evidence from Italy. *Journal of International Economics* 83:2, 109-125. [Crossref]

211. Christian Hepenstrick. 2011. The Sources and Magnitudes of Switzerland’s Gains from Trade. *SSRN Electronic Journal*. [Crossref]

217. Matthieu Crozet, Isabelle Méjean, Soledad Zignago. 2011. Plus grandes, plus fortes, plus loin... *Revue économique* 62:4, 717. [Crossref]

225. Fan Zhai. Chapter 2 Trade Liberalization and the Extensive Margin of Trade in a CGE Model with Heterogeneous Firms 27-40. [Crossref]
228. Francisco Alcalá, Pedro J. Hernández. 2010. Firms’ main market, human capital, and wages. *SERIEs* 1:4, 433-458. [Crossref]
229. Christian Volpe Martincus, Jerónimo Carballo. 2010. Beyond the average effects: The distributional impacts of export promotion programs in developing countries. *Journal of Development Economics* 92:2, 201-214. [Crossref]
238. Filip Abraham, Jan Van Hove. 2010. Can Belgian Firms Cope with the Chinese Dragon and the Asian Tigers? The Export Performance of Multi-Product Firms on Foreign Markets. *SSRN Electronic Journal*. [Crossref]
239. Christian Hepenstrick. 2010. Per-Capita Incomes and the Extensive Margin of Bilateral Trade. *SSRN Electronic Journal*. [Crossref]
241. Matthieu Crozet, Isabelle Mejean, Soledad Zignago. 2010. Plus grandes, plus fortes, plus loin... Les performances des firmes exportatrices françaises (Bigger, Stronger, Farther... Relative Performances of French Exporting Firms). *SSRN Electronic Journal*. [Crossref]
243. Markus Kelle, Jörn Kleinert. 2010. German Firms in Service Trade. *Applied Economics Quarterly* 56:1, 51-71. [Crossref]

249. Jože P. Damijan, José de Sousa, Olivier Lamotte. 2009. Does international openness affect the productivity of local firms?. *Economics of Transition* 17:3, 559-586. [Crossref]

253. Fan Zhai. Unlocking the Trade Potential in Least-Developed Countries: A CGE Investigation for Bangladesh 150-174. [Crossref]

254. Lorenzo Casaburi, Valeria Gattai, G. Alfredo Minerva. Firms’ International Status and Heterogeneity in Performance: Evidence from Italy 151-187. [Crossref]

262. Ines Buono. 2009. Firm Heterogeneity and Comparative Advantage: The Response of French Firms to Turkey’s Entry in the European Customs Union. *SSRN Electronic Journal*. [Crossref]

264. Antoine Berthou, Lionel Fontagne. 2009. How Do Multiproduct Exporters React to a Change in Trade Costs?. *SSRN Electronic Journal*. [Crossref]

269. Hiau Looi Kee,, Kala Krishna. 2008. Firm-Level Heterogeneous Productivity and Demand Shocks: Evidence from Bangladesh. *American Economic Review* 98:2, 457-462. [Citation] [View PDF article] [PDF with links]

272. Marc J. Melitz. International Trade and Heterogeneous Firms 1-5. [Crossref]

283. Hiau Looi Kee, Bernard Hoekman. 2007. Imports, entry and competition law as market disciplines. *European Economic Review* 51:4, 831-858. [Crossref]

288. Mirabelle Muûls, Mauro Pisu. 2007. Imports and Exports at the Level of the Firm: Evidence from Belgium. *SSRN Electronic Journal*. [Crossref]

289. Luis F. Araujo, Emanuel Ornelas. 2007. Trust-Based Trade. *SSRN Electronic Journal*. [Crossref]

290. Richard Kneller, Mauro Pisu. 2007. Export Barriers: What are They and Who Do They Matter To?. *SSRN Electronic Journal*. [Crossref]

292. Claudia Canals, Xavier Gabaix, Josep M. Vilarrubia, David E. Weinstein. 2007. Trade Patterns, Trade Balances and Idiosyncratic Shocks. *SSRN Electronic Journal*. [Crossref]

294. Elhanan Helpman. 2006. Trade, FDI, and the Organization of Firms. *Journal of Economic Literature* 44:3, 589-630. [Abstract] [View PDF article] [PDF with links]

295. Elhanan Helpman. 2006. Trade, FDI, and the Organization of Firms. *SSRN Electronic Journal*. [Crossref]

